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Industry Objectives For LES Modeling

RANS used routinely for design, test and

verification el
— Designed and calibrated to provide time average RANS Mode
flowfield E(k) A \

Time resolved flowfield required for: \{
— Quantification of time resolved unsteady behavior vic k? LES sgs Model

* Acoustics, ignition, unsteady part loads (e.g. high cycle U \
fatigue (HCF) forcing), structural interactions (e.g. ( \
flutter), transient flows (e.g. inlet unstart, aircraft
maneuver, take-off), combustion instability, engine
operability, ...

— Improved prediction of time mean flows

Desirable LES characteristics

— Time mean solution maintained (or improved)

* Asymptote to RANS solution as space-time resolution is
reduced

e Approach DNS as resolution is increased
— Generality — no problem or scale specific tuning
— Improve CFD Fidelity

LES is practical today for engineering problems of interest — How do we
quantify accuracy and calibrate methods for the engineering design process?
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Industrial LES

Outline

— Example Problem Description
— Affordability
— Accuracy

e Unsteady Spectra
» Steady state preservation

— Reacting Flows

— Conclusions
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Affordability and Accuracy drive LES relevance to industry
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Example Problem — HCF Aeromechanic Forcing

* Determine unsteady pressure on plate behind high aspect ratio nozzle

— Rich flow measurements available

— Highly instrumented deck
* ~50 high response pressure transducers

e Steady RANS captures mean flow
* Can LES predict the unsteady pressure field?
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Relatively low frequencies associated with HCF make it a good candidate for initial
LES application
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LES Affordability

Today can afford (and RANS typically resolves) isotropic resolution to about 1% of
relevant engineering scale (L)
— 106 points in an L3 box
— Dt~L*10° sec (L in feet, a~1e3 ft/sec)
fax ~ 10°%/L Hz = 100/L kHz
 These scales are of engineering interest
— Highest structural modes are on this order (most structures less sensitive above this)
— Acoustic sources (20-20000 Hz)
« Insufficient resolution for
— Acoustic propagation to 100L (requires factor of 106 increase in cost)
— Turbulence spectra (<0.01%L length scale — 108 increase in cost)
— Chemically reacting flows

* Doubling resolution increases cost 8-16X, but only gets 2X higher frequency
— Better RANS and sub-grid models required for foreseeable future

Grid filtering

N* operation count ensures RANS and low frequency LES will be the norm
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LES Accuracy - Predicted Spectra

* Resolved spectra comparable with data
— Downstream spectra driven by larger scales — reasonable accuracy

— Upstream spectra has more high frequency content driven by smaller,
unresolved scales — reduced accuracy
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Today’s LES capability can predict large scale unsteadiness at un-calibrated accuracy
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LES Accuracy - Impact on Mean Flow

LES may alter the time mean solution
— Reduced mixing in upstream shear layer (small scales)
— Changes in mean pressure distribution over the deck as resolution increases

How do we interpret unsteady results? What aspects are more/less
reflective of physics? What inaccuracies are introduced by
— RANS model deficiencies ‘
— Inaccurate calculation of resolved scales
— Sub-grid models
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Today'’s LES has unintended and un-calibrated impact on mean flow predictions
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LES Accuracy - Drivers

Scheme order
— Impacts accuracy of highest resolved frequencies
— Higher order schemes allow higher frequencies to be computed on fixed grid

Grid spacing
— Increasing isotropic resolution expensive
— Cost increase goes as n3

Time resolution

— Code boundary layer stability constraints increase cost of spatially resolved
frequencies by an order of magnitude

— As space resolution increases, time resolution will need to increase
— Total cost for increased resolution goes as n*

Grid filtering
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LES accuracy dependent on multiple, inter-related, tunable models and assumptions
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LES Accuracy — Drivers (Cont)

Boundary Modeling

— Near wall modeling
* Near the wall dissipation and energy spectrums overlap
* Near the wall there are no “universal” small scales to model
*  Hybrid RANS/LES, or LES with DNS resolution is required

— Inflow Boundary Modeling
* Inlet turbulence assumptions drive solution

Turbulent viscosity model
— RANS and/or sub-grid turbulence model
— Over dissipation of flow can over-damp resolved scales
— Under dissipation leads to

* Under-prediction of the mean flow mixing in poorly resolved regions

e Over prediction of resolved unsteadiness

Detached Eddy Simulation

=l

LES Dynamic ksgs

— Improved sub-grid models are required to maintain or improve prediction of mean flow

Reactive Flow Modeling

— Combustion also occurs on the LES scales (Molecular diffusion, Reaction)
— Different subgrid scale species variations, which have the same supergrid value will not have the same

combustion characteristcs

—

Chemical Kinetics
o, = f(Y,T,P,At)
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LES accuracy dependent on multiple, inter-related, tunable models and assumptions
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LES Challenges in Industrial Setting

Challenges

— Affordability — Can only resolve largest unsteady scales

* Large scales of most interest for engineering design

* Better RANS and sub-grid models required for foreseeable future
— Accuracy — Code independent accuracy quantification needed

* Mean flow accuracy not maintained as resolution increases — asymptote to RANS solution as
resolution decreases

* Determine accuracy of mean flow as more unsteadiness is resolved
* Quantify accuracy of predicted spectra

— Complex Physics

Directions

— Resolve more scales as compute capacity and schemes evolve
* Resolution of all scales not practical or necessary for most engineering applications

— Need improved methods to process, present and understand unsteady (LES) results
— Quantify the accuracy of resolved unsteadiness — spectral accuracy
— Understand the impact of resolved large scales on mean flow prediction

— Develop models to improve macro (resolved scale) LES predictions as well as the micro
(sub-scale) properties is required

Accuracy quantification and calibration of engineering parameters of interest
required for reliable use of LES in design processes
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